MBO₃ Calcite-Type Borates of Al, Ga, Tl, and Rh

TOM A. BITHER AND HOWARD S. YOUNG*

Central Research Department, † E. I. du Pont de Nemours and Company, Experimental Station, Wilmington, Delaware 19898

Received July 7, 1972

The Al, Ga, and Tl isotypes of the known calcite-type borate $InBO_3$ as well as the $4d^6$ compound RhBO₃ of the same structure have been prepared at high pressure. Doping of AlBO₃ with traces of Cr gives pink crystals similarly to the formation of ruby from corundum. Properties of the above compounds are presented. In addition, crystal data for calcite-type borates, carbonates, and nitrates have been compiled and their relationships are discussed.

Introduction

The isotypism of borates, carbonates, and nitrates was pointed out by Goldschmidt and Hauptmann (1) in 1932. In this early work, ScBO₃ and InBO₃ were prepared by firing mixtures of $Sc(OH)_3$ or $In(OH)_3$ and H_3BO_3 . Comparisons of their X-ray diffraction powder patterns with those of ZnCO₃ and CdCO₃ indicated these borates to have the calcite-type structure. In more recent work, Bernal et al. (2)prepared the series $Fe_{1-x}Ga_xBO_3$ (0 < x < 0.8) by fusion of the component oxides in a flux of Bi₂O₃ and confirmed the calcite structure in these borates. Other syntheses of MBO₃ compounds containing the 3d transition elements Sc (3), Ti (4), V (4, 5), Cr (4-6), and Fe (7), as well as Lu (8, 9) and Yb (10), the two smallest rare earths, have been reported in which these borates are also isotypes of this structure. Interest in the physical properties of VBO_3 (5), $CrBO_3$ (5), and $FeBO_3$ (7, 11) prompted a search for additional calcite-type borates. High-pressure syntheses have now been used to obtain the remaining group IIIA compounds AlBO₃, GaBO₃, and TIBO₃, as well as the 4d compound RhBO₃, all with this structure. Other high-pressure borates of Al and Ga were also obtained in the course of this work and will be reported separately.

* Present address: Department of Geophysical and Geological Sciences, Princeton University, Princeton, N.J.

† Contribution No. 1946.

Copyright ^(C) 1973 by Academic Press, Inc. All rights of reproduction in any form reserved.

Experimental

Reactions were carried out (1) at pressures of 25-65 kbar in platinum or gold capsules in a tetrahedral anvil device described previously (12), (2) at pressures of 5-30 kbar in boron nitride or welded platinum capsules in a piston-cylinder device similar to that of Boyd and England (13), and (3) under an external argon pressure of 3 kbar in sealed platinum or gold tubes. Reagent grade chemicals were used as reactants and were ground together in the desired ratios and pelleted prior to reaction. Following reaction at the desired temperatures and pressure, the products were extracted with hot water to remove soluble materials including excess B₂O₃ or H₃BO₃ and were then rinsed with acetone and air dried.

Single crystal data were obtained from precession photographs. X-ray powder diffraction patterns were taken at 25°C with a Debye-Scherrer camera or a Hägg-Guinier camera which used monochromatic $CuK\alpha_1$ radiation and a KCl internal standard (a = 6.2931 Å). Films were read on a David Mann film reader, Model No. 1222. Cell dimensions were refined by a least-squares method and showed a standard deviation of ± 0.001 Å or less.

Results

AlBO₃. Calcite-type AlBO₃ was obtained in an assortment of macrocrystalline habits including colorless powders, platelets, polyhedra, and rhombs by reaction of Al_2O_3 or $Al(OH)_3$ and B_2O_3 at atom ratios of A1: B of about 1:1.25 to 1:2 under a very wide range of high pressures. Typical synthesis conditions yielding this compound included reactions at (1) 65 kbars/1200°C-2 hr/cool 4 hr to 400°C/quench, (2) 30 kbars/ 800°C-6 hr/quench, and (3) 10 kbars/900°C-4 hr/quench. Reactions at lower pressures of 3–5 kbars gave the known borates $9Al_2O_3 \cdot 2B_2O_3$ (14) and/or $2Al_2O_3 \cdot B_2O_3$ (14). The latter phase was also formed in the reaction of $Al_2O_3/3H_3BO_3$ at 750°C and atmospheric pressure.

Oxygen analyses on polyhedral crystals obtained under reaction conditions (2) confirmed the formula AIBO₃; Anal. Calcd: O, 55.95. Found: O, 55.85. Single crystal X-ray data indicated that AIBO₃, like InBO₃, has rhombohedral symmetry in space group R3c. Hexagonal cell dimensions $a_H = 4.463$ and $c_H = 13.746$ Å were obtained by refinement of both Guinier and Debye–Scherrer (Table I) X-ray powder data.

Although AlBO₃ was not isolated from syntheses run at pressures below 10 kbars, the pressure-quenched compound showed high thermal stability at ambient pressure with DTA measurements indicating decomposition around 1000°C. The decomposed product was the known orthorhombic $2Al_2O_3 \cdot B_2O_3$ phase (14). Crystals of AlBO₃ had a Knoop microhardness (KHN₁₀₀) in the range 1600-1800 (Al₂O₃, corundum, ~ 2100). No luminescence was noted under either short or long wavelength uv radiation. The infrared spectrum of AlBO₃ is similar to that of InBO₃ (15) in the regions around 1300-1100 cm⁻¹ and 700 cm⁻¹ because of contributions from the planar BO₃ anion. Shifts to lower frequencies observed in bands below 600 cm⁻¹ may be attributed to the appreciably lower cation mass of Al vs In.

AlBO₃: Cr. By reaction under conditions described in the preceding section, but in the added presence of traces of Cr_2O_3 (Al: Cr ~ 1:0.005), AlBO₃ was doped to give pale-pink crystals of AlBO₃: Cr similarly to the formation of ruby from corundum. Hexagonal cell dimensions obtained from Guinier powder data, $a_H = 4.464$, $c_H = 13.750$ Å, indicated this AlBO₃: Cr to have a cell size just larger than that of the unmodified host.

Samples of calcite-type AIBO₃:Cr qualitatively showed red luminescence of moderate intensity when activated with 366 nm uv radiation. This fluorescence centered in a broad band (580–720 nm) with a maximum around 640 nm and superposed thereon were three narrow bands centering at 676, 690, and 704 nm. Moderate red-orange cathodo-luminescence was also noted upon bombardment *in vacuo* with low voltage ions. The infrared spectrum essentially duplicated that of unmodified AIBO₃.

 $Al_xT_{1-x}BO_3$ Phases. In addition to the synthesis of pink, crystalline AlBO₃ doped with traces of Cr, mixed aluminum-transition-metal borates containing variable amounts of Fe, V, and Cr were also prepared. Polyphase products resulted and the calcite-type borates formed usually could not be isolated for characterization. Compositions were estimated from cell volumes of the intermediate calcite-type phases assuming Vegard's rule to apply.

Reaction of $Al_2O_3/Fe_2O_3/3.2$ B_2O_3 at 65-25 kbars/1200-800°C gave dark, crystalline, mixed calcite-type phases in the composition range Fe_{0,3-0,6}Al_{0,7-0,4}BO₃ plus other borates. Qualitatively, none of these products showed a ferromagnetic transition to 1.7K using the Meissner technique (detection of rapid change in permeability with temperature). Small amounts of Al were introduced into $FeBO_3$ ($Fe_{1-x}Al_xBO_3$, x < 0.05) by reaction of Fe₂O₃/0.2 Fe(NO₃)₃. $9H_2O/0.05-0.1 Al_2O_3/1.5 B_2O_3$ at 65 kbars/800-1000°C. Dark-green fragmented crystals could be isolated. Magnetic measurements on the composition Fe_{0.98}Al_{0.02}BO₃ gave the values $\sigma_s = 4.3 \text{ emu/g}, \ \mu_s = 0.088 \ \mu_B, \ T_c = 347 \text{ K}$ as compared to $\sigma_s = 4.4$ emu/g, $\mu_s = 0.09$ μ_B , $T_c =$ 355 K for dark-green crystals of unmodified FeBO₃ prepared similarly. The Al thus appears to act only as a diluent and brings about no change in the cant angle of the magnetic system so as to increase the effective magnetic moment.

Reactions of Al_2O_3/V_2O_3 or $Cr_2O_3/3.2$ B_2O_3 were carried out under pressure as in the Al–Fe system. Dark, crystalline mixed calcite-type phases in the ranges $V_{0.75-0.25}Al_{0.25-0.75}BO_3$ and $Cr_{0.67-0.33}Al_{0.33-0.67}BO_3$ were isolated containing other borates. In the (Al,V)BO₃ compositions, Meissner measurements again indicated a dilution effect of Al in VBO₃ since its magnetic transition dropped from 32 K (5) to values around 13–9K.

 $GaBO_3$. Although GaBO₃ has been reported (16) to show broad band luminescence upon excitation with short wave uv radiation, unit cell dimensions of this compound are not recorded. Calcite-type GaBO₃ was synthesized in the present work over a range of pressures in a

TABLE I

Powder Diffraction Data for 1	MBO ₃ Calcite-Type Borates
-------------------------------	---------------------------------------

		Al		Ga	Rh		Tİ	
hk l	<i>I</i> / <i>I</i> ₀	d	<i>I</i> / <i>I</i> ₀	d		d	<i>I</i> / <i>I</i> ₀	d
102	60	3.371	95	3.459	100	3.508	100	3.758
014	100	2.569	100	2.642	100	2.677	100	2.912
006	35	2.291	5	2.365	20	2,389	20	2.657
110	15	2.231	45	2.285	95	2.320	65	2.462
113	100	2.007	40	2.057	45	2.088	10	2.235
022	55	1.861	50	1.906	90	1.935	60	2.061
204	35	1.685	25	1.727	65	1.753	45	1.881
116	80	1.599	55	1.643	95	1.665	los	1 000
108	40	1.570	30	1.618	70	1.638	(95	1.808
121	10	1.453	5	1.487	_	-	~	-
212	30	1.429	25	1.462	75	1.486	60	1.581
124	35	1.345	30	1.377	70	1.399	(70	1 407
0110	-	-	5	1.334	30	1.351	{/0	1.490
028	-	-	120	1 210	_	_	30	1.458
300	80	1.289	{30	1.319	70	1.339	25	1.422
119	25	1.261	5	1.297	5	1.314	-	-
0012	10	1.146	10	1.181	10	1.196	5	1.332
2010	-	-	10	1 1 5 7	-	-	20	1.280
036	-	-)10	1.134	35	1.168	50	1 255
218	10	1.113	10	1 1 4 3	50	1.159	150	1.235
220	-		10	1,145		-	10	1.233
223	10	1.084	5	1.110	~		-	-
132	2	1.059	5	1.084	25	1.101	140	1 1 7 2
1112	-		{15	1.048	50	1.064		1.1/2
314	20	1.023	(···		-	-	{50	1.136
1210	-	1 002	{10	1.028	50	1.043	(***	1.100
220	20	1.005	20	0.0012	-	-	20	1.119
1014	-	-	20	0.9813	10	0.9937	10	1.103
402		0.0202	10	0.9793	-	-	10	1.059
129	25	0.9302	10	0.9520	20	0.96/0	20	1.032
220	10	0,9095	15	0.9329	30	0.9464	25	1.019
0214	10	0,9010	5	0.9249		-	1.5	-
377	10	0 8793	5	0.9015	20	0.0140	12	1.007
234	10	0.8586	1	0.9001	30	0.9140	20	0.9730"
0312	45	0.8561	{10	0.8801	50	0 8021	50	0.9520
1 1 15	5	0.0501	<u>`</u> 10	0 8737	50	0.6921	55	0.9750
3 1 10	_	-	5	0.8678	25	0.8800	30	0 05200
410	5	0 8434	í	0.0070	25	0.0000	30	0.9320
408	15	0.8423	{5	0.8634	45	0.8765	10	0.9323
413	10	0.8295	5	0.8493		0.0705	- 10	0.9421
2114	5	0.8149	10	0.8387	25	0 8495	35	0 93256
2 2 12	_	-	5	0.8213	25	0.8325	30	0.9525
146	30	0.7916	25	0.8109	60	0.8231	1	0.2024
328	15	0.7880	10	0.8079	30	0.8198	{40	0.8803
a ·	Л	463 Å	1	568 Å	л	640 Å		022 \$
Gues .	13	746 Å	-+. 14	187 Å	-+. 1/	351 Å	4.	992 A
· Hex ·	15.	/ TU /1	14.	102 A	14.	551 A	15.	700 A

a,b,c = multiple reflections.

manner similar to that used to prepare AlBO₃. In contrast to AlBO₃, however, it was also possible to obtain GaBO₃ at atmospheric pressure by firing Ga₂O₃/3H₃BO₃ at 750°C for 48-72 hr.

Oxygen analyses on white microcrystals obtained from the reaction of $Ga_2O_3/6H_3BO_3$ at 30 kbars/900° C/6 hr/quench confirmed the formula GaBO₃; Anal. Calcd: O, 37.35. Found: O, 37.21, 37.02. X-ray diffraction powder data (Table I) indicated the calcite-type structure and refinement gave the hexagonal cell dimensions $a_H = 4.568$, $c_H = 14.182$ Å.

Crystals of GaBO₃ showed the same high thermal stability as noted for AlBO₃. DTA measurements indicated decomposition to occur around 1000°C with β -Ga₂O₃ being the end product isolated. The white luminescence reported by Blasse and Bril (16) for GaBO₃ was observed in some but not all the samples prepared in this study. No correlation of this phenomenon with synthesis conditions was noted. The infrared spectrum of GaBO₃ more closely resembles that of InBO₃ than that of AlBO₃, as would be expected from the respective cation masses.

 $GaBO_3$: Cr. Doping of GaBO₃ with Cr (Ga:Cr ~ 1:0.005) was achieved in the manner used to prepare AlBO₃: Cr. In contrast to the pink color obtained in this latter borate (and as in Al₂O₃:Cr), the resultant crystals were light green. This green coloration also occurs in Cr-doped α -Ga₂O₃ prepared at high pressure (17) and is attributed to the difference in crystal field splitting due to the difference in size of the Al⁺³ and Ga³⁺ cations. Certain of the GaBO₃: Cr samples were qualitatively observed to luminesce a faint red when irradiated with short- (but not with long-) wave uv.

 $TlBO_3$. Reaction of TINO₃/0.5-1 B₂O₃ at 65 kbars/1000°C-2 hr/cool 4 hr to 400°C/quench gave a product that after hot water extraction comprised a mixture of brown and white crystals. The former were not identified but the white crystals gave an X ray diffraction powder pattern (Table I) that could be indexed in the manner of the calcite-type MBO₃ compounds of Al, Ga, and In thus indicating formation of TIBO₃, the last member of this series. Refinement of the data gave the hexagonal cell dimensions $a_H = 4.932$, $c_H = 15.988$ Å.

In this reaction, the NO_3^- moiety in TlNO₃ acts as an oxidizing agent to convert Tl⁺ to Tl³⁺ prior to formation of TlBO₃. This oxidation may be enhanced by the hydrous conditions that

pertain in these syntheses since rigorously dried reactants were not used. At the lower reaction temperature of 600° instead of 1000°C, the reaction under pressure failed to produce TlBO₃ but gave the high-pressure corundum form of Tl₂O₃ (18) instead.

 $RhBO_3$. In addition to the calcite-type MBO₃ compounds of Al through Tl, the high-pressure synthesis techniques used herein have also yielded a new transition-metal isotype in this borate series. Reaction of Rh₂O₃/3.7 H₃BO₃ at 65 kbars/800°C-6 hr/quench gave a mixture of dark crystals plus a sludge that could be dispersed away in water, leaving prismatic, red-brown crystals up to 0.5 mm in length. The same crystals formed from the reactants $RhCl_3/3$ NaBO₂. 4H₂O but Rh metal was also isolated. Oxygen analyses on the red-brown crystals confirmed the formula RhBO₃; Anal. Calcd: O, 29.68. Found: O, 29.16. X-ray diffraction powder data (Table I) indicated the calcite-type structure and refinement gave the hexagonal cell dimensions $a_{H} =$ 4.640, $c_{H} = 14.351$ Å. In contrast to the MBO₃ compounds of V (5), Cr (5), and Fe (7), magnetic susceptibility data showed no ordering to take place in RhBO₃ down to 4.2 K. Crystals of RhBO₃ had a high Knoop microhardness (KHN₁₀₀) of around 2500 (SiC ~ 2500).

Discussion

Luminescence. From limited observations in this work, the luminescent behavior of the calcitetype compounds AlBO₃ and GaBO₃, both unmodified as well as doped with Cr, appears to resemble that reported (16, 19) for the compounds $YAl_{3}B_{4}O_{12}$ and $YGa_{3}B_{4}O_{12}$ in the related huntite-type structure. Thus AlBO₃ and $YAl_{3}B_{4}O_{12}$ fail to show fluorescence emission under short- or long-wave uv excitation, whereas; both Ga analogs show broad band (white) luminescence under short-wave uv excitation. In YAl₃B₄O₁₂: Cr and YGa₃B₄O₁₂: Cr, the Cr³⁺ emission (19) consists of two broad bands, a very weak one centering around 500 nm and a strong one around 700 nm with two sharp lines superposed thereon at 682 and 685 nm for the Al and at 690 and 692 nm for the Ga species, respectively. Less precise data suggest a similar situation to pertain for AlBO₃: Cr in which a strong, broad band centering around 640 nm has superposed thereon three narrow bands centering at 676, 690, and 704 nm. No data were obtained upon GaBO₃:Cr.

	Hex. cell					
		dims.,	Å	Room		
MZO ₃	Cation [®] r, Å	а	с	temp., <i>c/a</i>		
LiNO ₃	0.74	4.692	15.206	3.24		
NaNO ₃	1.02	5.070	16.829	3.32		
AgNO ₃	1.15			3.23 ^c		
KNO3	1.38			3.42 ^c		
$RbNO_3$	1.49	5.483	21.410	3.90 ^d		
NiCO ₃	0.690	4.5975	14.723	3.20		
MgCO ₃	0.720	4.6330	15.016	3.24		
CoCO ₃	0.745 ^e	4.6581	14.958	3.21		
ZnCO ₃	0.750	4.6528	15.025	3.23		
FeCO ₃	0.780^{e}	4.6887	15.373	3.28		
MnCO ₃	0.830 ^e	4.7771	15.644	3.28		
CdCO ₃	0.95	4.9204	16.298	3.31		
CaCO ₃	1.00	4.9899	17.064	3.42		

TABLE II CRYSTAL DATA^a FOR CALCITE-TYPE

NITRATES AND CARBONATES

^a Ref. 20.

^b Ref. 21.

^c Extrapolated to room temperature.

^d At 250°C.

e High spin state.

Crystal Data. The structure of the isotypic, rhombohedral, calcite-type MZO₃ borates, carbonates, and nitrates is depicted by Wyckoff (20)

as basically a rocksalt-like arrangement of M^{n+} cations and ZO_3^{n-} anions distorted by the spatial requirements of the latter. This cubic-type of packing may be regarded as one of the limits of this structure wherein the anions and cations are similar in size to each other, and, on a hexagonal basis, the ideal c/a ratio has a value of 4.90. The other limit may be regarded as the LiNbO₃-type wherein the cation is much smaller than the complex anion. In this arrangement, essentially a hexagonal close-packing of the oxygen atoms in the ZO_3^{n-} anion occurs with the cations located in the interstices. The ideal c/a ratio has a value of 2.82.

A brief compilation of crystal data for calcitetype nitrates and carbonates is given in Table II followed by a more detailed listing for borates in Table III. In both tables, the compounds are listed in the order of increasing cationic radius (21) for each anion grouping. Examination of the c/a values shows that all three sets of compounds are intermediate between the limiting structures discussed above since they have ratios at room temperature that range from 3.24 to 3.42, 3.20 to 3.42, and 3.08 to 3.32, respectively, for the nitrates, carbonates, and borates. The general trend is an increase in c/a as the cation size increases. It thus appears that in the calcite structure, the presence of large cations tends to force the structure toward a cubic, NaCl-type of packing, whereas smaller cations allow a collapse in the c direction of this array so as more

CRYSTAL DATA FOR CALCITE-TYPE BORATES								
	Effec. Ionic radius (a)		Hex. cell dims., Å			Unit cell vol	Electron	
MBO ₃	r, Å	r ³ , Å ³	а	с	<i>c</i> / <i>a</i>	Å ³	confign.	Reference
Al	0.530	0.149	4.463	13.746	3.08	237.1	$2p^{6}$	Ь
Cr	0.615	0.233	4.580	14.243	3.11	258.7	$3d^3$	с
Ga	0.620	0.238	4.568	14.182	3.11	256.3	$3d^{10}$	b
V	0.640	0.262	4.621	14.516	3.14	268.4	$3d^2$	с
Fe	0.645	0.268	4.624	14.470	3.13	267.9	3d ⁵	d
Rh	0.665	0.294	4.640	14.351	3.09	267.6	$4d^{6}$	b
Ti	0.67	0.30	4.670	14.90	3.19	281.4	$3d^1$	е
Sc	0.745	0.413	4.759	15.321	3.22	300.5	3p ⁶	f
In	0.800	0.512	4.823	15.456	3.21	311.4	4d ¹⁰	g
Lu	0.861	0.638	4.915	16.211	3.30	339.2	$4f^{14}$	b, g, h
Yb	0.868	0.654	4.924	16.322	3.32	342.7	$4f^{13}$	i
Tl	0.885	0.693	4.932	15 988	3 24	336.8	$5d^{10}$	Ь

TABLE III

^a Ref. 21. ^b This work. ^c Ref. 5. ^d Ref. 7. ^e Ref. 4. ^f Ref. 3. ^g Ref. 8. ^h Ref. 9. ⁱ Ref. 10.

FIG. 1. Hexagonal cell dimensions of calcite-type borates vs. cation radii.

closely to simulate a hexagonal type of oxygen close-packing. The degree of ionicity of the specific cation also contributes in a secondary way to the packing in this structure since the more covalent of two ions of similar size is seen to lead to a smaller value of c/a. For example, this effect appears to pertain for AgNO₃, CdCO₃, and RhBO₃, InBO₃, and TIBO₃.

A plot of effective cationic volume vs unit cell volume has been presented by Prewitt et al. (18), for an M₂O₃ corundum series of compounds containing nine of the twelve cations present in the calcite-type borates listed in Table III. In this compilation, a well-defined linear relationship exists between cell volumes and cubed cation radii for this wide range of cations except for the compound Tl₂O₃ which appears to have an anomalously low cell volume. If a similar plot is made for the calcite-type borates, however, the data show considerable scatter and no clear linear-type of volume relationship is apparent. In Fig. 1, plots of hexagonal cell dimensions a and c vs appropriate cation radii would suggest from the linearity of a vs r as opposed to the irregularity of c vs r that the anomalous volume relationship of the borates arises as a consequence of the manner in which the cations pack in the cdirection of this rhombohedral lattice and tend toward one limiting structure or the other, as discussed previously. In contrast, in the corundum structure a much more rigid adherence to hexagonal close-packing of the oxygen atoms pertains which would lead to the observed linear r^3 vs volume relationship.

Acknowledgments

We wish to thank C. L. Hoover for supervision of the high-pressure experiments, Catharine M. Foris for the single crystal determination, Carol Hermann and Naomi Schlicter for infrared data, Carol G. Frederick for magnetic measurements, and L. H. Brixner, P. C. Donohue, D. B. Rogers, and A. W. Sleight for helpful discussions during the preparation of this manuscript.

References

- 1. V. M. GOLDSCHMIDT AND H. HAUPTMANN, Nach. Ges. Wiss. Göettingen Math.-Phys. Kl. 53, (1932).
- 2. I. BERNAL, C. W. STRUCK, AND J. G. WHITE, Acta Crystallogr. 16, 849 (1963).
- 3. A. BIEDL, Amer. Mineral. 51, 521 (1966).
- 4. H. SCHMID, Acta Crystallogr. 17, 1080 (1964).
- T. A. BITHER, C. G. FREDERICK, T. E. GIER, J. F. WEIHER, AND H. S. YOUNG, Solid State Commun. 8, 109 (1970).
- N. C. TOMBS, W. J. CROFT, AND H. C. MATTRAW, Inorg. Chem. 2, 872 (1963).
- 7. J. C. JOUBERT, T. SHIRK, W. B. WHITE, AND R. ROY, Mater. Res. Bull. 3, 671 (1968).
- 8. E. M. LEVIN, R. S. ROTH, AND J. B. MARTIN, Amer. Mineral. 46, 1030 (1961).

- 9. S. C. Abrahams, J. L. BERNSTEIN, AND E. T. KEVE, J. Appl. Crystallogr. 4, 284 (1971).
- H. J. MEYER AND A. SKOKAN, Naturwissenschaften 58, 566 (1971).
- A. J. KURTZIG, R. WOLFE, R. C. LECRAW, AND J. W. NIELSEN, Appl. Phys. Lett. 14, 350 (1969).
- A. W. SLEIGHT AND T. A. BITHER, *Inorg. Chem.* 8, 566 (1969).
- 13. F. R. BOYD AND J. L. ENGLAND, J. Geophys. Res. 65, 741 (1960).
- 14. H. SCHOLZO, Z. Anorg. Allg. Chem. 284, 272 (1956).
- 15. C. E. WEIR AND R. A. SCHROEDER, J. Res. Nat. Bur. Stand. 68A, 465 (1964).

- 16. G. BLASSE AND A. BRIL, J. Inorg. Nucl. Chem. 29, 266 (1967).
- J. P. REMEIKA AND M. MAREZIO, Appl. Phys. Lett. 8, 87 (1966).
- 18. C. T. PREWITT, R. D. SHANNON, D. B. ROGERS AND A. W. SLEIGHT, *Inorg. Chem.* 8, 1985 (1969).
- 19. G. BLASSE AND A. BRIL, Phys. Status Solidi 20, 551 (1967).
- R. W. G. WYCKOFF, "Crystal Structures," Vol. 2, Chap. VII, A, Interscience Publishers, New York (1964).
- R. D. SHANNON AND C. T. PREWITT, Acta Crystallogr. B25, 925 (1969); Ibid., B26, 1046 (1970).